

Political Architecture: Contextual Development and Opposition to Housing

Urban Affairs Review

1–31

© The Author(s) 2025

Article reuse guidelines:

sagepub.com/journals-permissionsDOI: [10.1177/10780874251398034](https://doi.org/10.1177/10780874251398034)journals.sagepub.com/home/uar

Adrian Pietrzak¹ and Tali Mendelberg¹

Abstract

American cities face a housing affordability crisis, partly because of public opposition to dense housing. Explanations have focused on property values, congestion, or demographics. This literature neglects a factor familiar to urban planners: architecture. We argue that people have *contextual development* preferences and oppose developments that don't "fit" the surrounding neighborhood in height and style. We test this hypothesis with survey experiments employing a novel visual approach with tightly controlled but realistic images of buildings and neighborhoods. We find that buildings which fit are supported more, an effect which isolates the interaction of building architecture and context. The effect holds for homeowners and renters, and urbanites and suburbanites, suggesting it is not driven by concerns over property values or density alone. Moreover, buildings that don't fit prompt intentions to engage in costly political behavior. When we impose trade-offs, support drops, but remains high, suggesting contextual fit preferences are meaningful.

Keywords

architecture, experiment, land use, housing, neighborhood

¹Politics, Princeton University, Princeton NJ, USA

Corresponding Author:

Adrian Pietrzak, Politics, Princeton University, 227 Corwin Hall, Princeton, NJ 08544, USA.
Email: apietrzak@princeton.edu

Introduction

Cities across the world increasingly face a housing affordability crisis. In the United States, residents of nearly all the largest cities spend an increasing share of their incomes on housing. In 2022, half of all renters were cost burdened (Joint Center for Housing Studies 2024). Housing unaffordability is associated with many deleterious consequences, including eviction, homelessness, and constrained access to high-opportunity cities (Chetty, Hendren and Katz 2016; Colburn and Aldern 2022; Ganong and Shoag 2017; Lee, Tyler and Wright 2010; O’Flaherty 2004).¹

Economists have identified a lack of housing supply as the primary culprit, and point especially to a dearth of multifamily units (Glaeser, Gyourko and Saks 2005; Gyourko, Hartley and Krimmel 2021). This shortage is partly driven by restrictions on the supply of dense new housing, through stringent local land-use regulations (Been, Gould Ellen and O’Regan 2019, 2024; Glaeser and Gyourko 2002; Gyourko, Saiz and Summers 2008, 2021). These restrictions are motivated, in part, by the fact that dense multifamily housing is unpopular (Larsen and Nyholt 2024b; Marble and Nall 2021; Matheis and Sorens 2024; O’Grady 2020; Trounstine 2023). Scholars have studied many potential motives for this opposition to density. These include perceptions of economic self-interest, concerns over congestion of public goods such as schools, and the desire to exclude poor or minority residents (Banzhaf 2014; Fischel 2005; Hankinson 2018, 2024; Krimmel 2022; Marble and Nall 2021; Sahn 2025; Trounstine 2023).

However, one explanation neglected in these studies is architecture, specifically, how the architecture of new development fits into the existing neighborhoods. We argue that people have aesthetic preferences over the architecture of new development. Specifically, they assess how well a proposed building’s style and height match the surrounding buildings. These preferences affect opposition or support for new housing. That is, people have *contextual development* preferences.

Architecture has a long history in public discourse about new housing. For example, the modernist architecture of “urban renewal” was a frequent source of discord, bemoaned by “brownstoners” who sought to preserve prewar townhouse neighborhoods, and is even sometimes blamed for the decline of public housing which was often viewed as ugly and hulking (Hunt 2015; Osman 2011). Recently, similar debates have come up over “fast casual” architecture: the blocky, unornamented apartment buildings that have become common in many American cities (Capps 2017; Kodé 2023). In addition to stylistic debates, height has long been a bone of contention in local permitting. Regulations restricting the height of new buildings are prevalent (Gyourko, Hartley and Krimmel 2021). Even in high-rise New York City, laws such as

the “Sliver Law” banned thin high-rises from residential neighborhoods, and recent development of tall buildings has elicited intense public backlash (Carroll 1983; Goldberger 2014; Hinds 1984).

A concept that bridges style and height is *contextualism*, an architectural philosophy that calls for new buildings to be integrated with—or fit—their surrounding built environment, respecting the existing architecture of neighborhoods (Komez Daglioglu 2015). Contextualism emerged as a response to modernism’s “disregard for context” and was quickly adopted by a growing preservationist movement in the mid-to-late 1900s (Hamer 2000; Komez Daglioglu 2015). Preservationists have successfully created thousands of historic districts across U.S. cities, often with the explicit aim of restricting development that does not conform to the height and style of the neighborhood. Contextualist ideas have also appeared in other urban planning regulations, such as New York City’s contextual zoning regulations or civic design review in cities such as Seattle (Dublin-Boc 2023; National Park Service 2012; Preservation Alliance for Greater Philadelphia 2007; Scheer and Preiser 1994; Smith 2019).

While local discourse has long featured concerns about style, height, and architectural context, there has been little systematic study of their impact on public opinion. To be sure, concerns about architectural context come up frequently in public comments at local meetings about proposed housing (Einstein, Palmer and Glick 2019). In addition, surveys suggest that Americans prefer traditional style buildings (ADAM Architecture 2009; National Civic Art Society 2020; O’Grady 2020), and many studies find that a public dislike of taller or larger apartment buildings (Hankinson 2018; Marble and Nall 2021; O’Grady 2020; Trounstine 2023). However, this literature has left three gaps. First, few studies have systematically varied style as a predictor for support for new housing. Thus, the impact of style *per se* is unclear. Second, existing studies have not disentangled different explanations for why height is disliked. Is it the impact of a large number of new units and the people they bring, or is height disliked specifically due to its aesthetic impact? Finally, this literature has not focused on the public’s preferences for architectural context, that is, how building height and style fit the neighborhood surroundings.

We argue that many people hold intuitive ideas about desirable architecture in their neighborhood, and they support or oppose dense housing partly based on their desire to avoid buildings that do not fit in height and style. That is, citizens have *contextual development* preferences. To test this hypothesis, we measure preferences for style and height, and experimentally manipulate the neighborhood context. Specifically, we show respondents images of proposed apartment buildings that vary in height (2, 4, 5, or 10 stories) and style (modern or traditional) and ask if they would support or oppose the building.

In our control arm, we do not show the surrounding buildings, allowing us to assess support for different heights and styles without context. This is designed to measure support for the building's architectural attributes per se. In this baseline condition, we find that the taller the building, the lower its support, while building style has no impact. That is, even without any context, people tend to dislike taller buildings.

To assess the impact of context above and beyond height and style per se, our treatment arm varies whether the identical building fits or does not fit by changing the style and height of the *surrounding* buildings. Doing so allows us to isolate the effect of contextual fit from the effect of building height and style.

Compared to the no-surroundings control, citizens prefer buildings which fit on both height and style, by 4 percentage points. Conversely, buildings which don't fit are penalized by 4 percentage points. That is, showing the neighborhood context increases the spread in support between buildings which fit and don't fit by 8 percentage points. Thus, citizens have contextual development preferences and prefer buildings which fit the neighborhood context. The context effect is roughly similar across subgroups, suggesting many Americans have such preferences. Notably, contextual development effects are similar for two theoretically relevant subgroups: between renters and homeowners and between urbanites and suburbanites, while also holding across race, age, and party identification. This suggests that congestion-related concerns about density (which are likely higher among suburbanites) or concerns over property values (likely higher among homeowners) are not driving the main effects. In addition, preferences for buildings which fit are associated with preferences for contextual housing policy, suggesting our measure of building support taps a general preference. Further, compared to the no-context control, buildings which don't fit increase intention to engage in costly political behavior (such as attending a local meeting to express their view about the building) by 7 percentage points overall, and 13 percentage points among frequent voters. Finally, most respondents still prefer buildings that fit even when we impose real-world trade-offs on those buildings.

This paper contributes to our understanding of the motives behind opposition to new housing. We find that preferences toward new housing are context-dependent, that is, anchored by the existing architecture of neighborhoods. This suggests that stringent land-use regulations, which create that architecture, may be remarkably durable, as they alter public opinion about what kind of development is considered appropriate in a neighborhood. Many people dislike development that doesn't fit, even when the developer compensates for it, and express a willingness to take action to block it. These preferences may help explain why local meetings often see intense

opposition to the so-called “out-of-scale” development. Finally, while citizens are responsive to trade-offs, contextual development remains popular, suggesting that moving the needle toward denser urban development is costly.

Opposition to Housing Development

Scholars have long observed opposition to new housing development. The opposition is particularly intense among residents living near proposed development (a phenomenon often called NIMBYism, “not-in-my-backyard”). An unrepresentative set of citizens particularly opposed to development often engage in costly political such as attending local meetings to stop new housing (Einstein, Glick and Palmer 2019a; Einstein, Palmer and Glick 2019b; Sahn 2025; Schively 2007; Yoder 2020). But opposition to dense housing is not only found among meeting attendees and those living nearby. Rather, dense housing is broadly unpopular. Americans’ distaste of density cuts across many demographic cleavages, extending to renters as well homeowner, and even to people who live in dense cities, long theorized proponents of new housing (Hankinson 2018; Hankinson, Magazinnik and Sands 2024; Trounstine 2023).² In experiments testing the effects of many housing attributes, density is often the attribute most penalized (Marble and Nall 2021; Mattheis and Sorens 2024; O’Grady 2020; Trounstine 2023).

What explains Americans’ distaste of dense new housing? The main existing explanations include concerns over congestion of local public goods (such as schools) or other negative externalities (such as crime); financially self-interested motives such as homeowners’ desire to bolster their property values or renters’ skepticism that new housing lowers rents; and symbolic attitudes such as dislike of cities or of developers (Banzhaf 2014; Broockman, Elmendorf and Kalla 2024; Elmendorf, Nall and Oklobdzija 2025; Fischel 2005; Hankinson 2018; Hankinson, Magazinnik and Sands 2024; Krimmel 2022; Marble and Nall 2021; Stiglitz 1982; Trounstine 2023). Most of these existing explanations focus on the *consequences* of density. For example, Trounstine (2023) shows that people associate denser apartment buildings with increased crime and traffic, decreased school quality, and lower property values, and do not think the new units will improve rental affordability.

While the downstream consequences of density likely explain some opposition to dense development, there is an alternative, relatively neglected explanation: the aesthetic impact of the proposed buildings. Many proposed dense buildings are taller or have a different style than their surroundings. Citizens may have discreet preferences about the architecture of new buildings. They may dislike tall buildings per se, or dislike a building’s stylistic features, or dislike the mismatch of a building’s height or style with the surrounding buildings. That is, existing studies have underexplored the independent effect

of building architecture on opposition to new housing, and do not differentiate between density on the one hand, and height, style, and architectural context on the other hand.

There is reason to believe that citizens care about architecture. Concerns over the aesthetic impact of new developments come up frequently in comments in local meetings (Einstein, Palmer and Glick 2019). These concerns involve stylistic concerns as well as concerns about how new buildings match the existing neighborhood. Reports about contentious development often cite these concerns, such as the complaints stylistic choices such as bright colors, paneling, and large blocky massing (Kodé 2023). Surveys suggest that Americans prefer traditional style buildings over the more common modern styles of new development (ADAM Architecture 2009; National Civic Art Society 2020).

However, these attributes have been neglected in prior studies of attitudes about housing. Only one study examined both style and fit, finding a small preference toward buildings that were “traditional style, like other local buildings” (O’Grady 2020).³ However, this study bundled together style, contextual fit, and density, which we argue are distinct. It also varied architectural context only with text, thereby potentially underestimating its influence since it likely operates visually. A pair of studies uses administrative data about respondent-level building heights in the area, finding that in areas without a single 5-story residential building, respondents oppose taller buildings at higher rates and that residential buildings proposed in areas with at least one newer residential building are opposed at lower rates (Larsen and Nyholt 2024a, 2024b).⁴ However, neither study isolates the effect of fit, height, and style. Finally, two studies show visual representations of building height with respect to existing neighborhoods (Hankinson and de Benedictis-Kessner 2024; Woodcock, Dovey and Davison 2012). However, both studies show all proposed buildings as taller than existing neighborhoods and do not manipulate style, so they are unable to isolate the effect of fit. We build on all these studies and address their open questions by designing a survey experiment with visuals that precisely manipulate height, style, and contextual fit.

Contextual Development Preferences

We argue that architecture matters. We build on an explanation neglected in the literature, namely, that land-use regulations have a profound impact on the physical look of neighborhoods (Shertzer, Twinam and Walsh 2018). This creates “facts on the ground” that anchor preferences about new housing. We hypothesize that many citizens value maintaining the existing architecture of a neighborhood in and of itself. Specifically, citizens have *contextual*

development preferences, that is, they evaluate new housing by how it “fits” into the context of the existing neighborhood. They hold intuitive ideas about the characteristics of desirable architecture in their neighborhood, and dislike housing that does not fit the neighborhood’s architectural context.⁵ By implication, past decisions toward land-use regulation, such as single-family zoning or height restrictions, can become self-reinforcing and reduce support for denser development due to public opinion which favors lower density housing.

To test this explanation, we examine public opinion about the architecture of proposed apartment buildings and their fit with the surroundings. First, we measure preferences toward the architecture of a building. For simplicity, we study two physical attributes of a building: its style, and its height. Style describes the genre of architecture (i.e., Victorian, Brutalist, etc.), including the building materials, colors, and other aesthetic features. We focus on two broad styles: traditional or modern. Our traditional buildings are more ornamented and use brick materials and warm tones, reflecting themes common in older housing stock. Our modern buildings are less ornamented, use paneling and glass materials, and black and white cooler tones. While this collapses the diversity of architectural styles and bundles together many stylistic attributes, our manipulation allows us to generate strong treatments containing the most relevant stylistic differences. Height simply describes the number of stories in a building. We tie the number of units in the building to its height.⁶

H1: Respondents prefer traditional style architecture (in line with the sparse survey work on style and anecdotal reporting about style).

H2: Respondents prefer shorter buildings (in line with robust findings in the literature about density).⁷

Second, we focus on the fit of a proposed building with the surrounding neighborhood context. In prior literature, when building attributes have been studied, their impacts are assumed to be fixed. For example, scholars assume that people have a preference over how tall a building should be regardless of what surrounds it. But, as elaborated above, there is reason to think attitudes toward new construction depend on the built environment of a neighborhood. For example, citizens may dislike tall buildings proposed in a less dense suburb but support construction in a denser city center. Or, they may dislike modern building styles (common in new development) only in neighborhoods with traditional buildings.

Our definition of contextual development is based on a concept often referred to by urban planners and architects as “Contextualism,” a viewpoint that development should relate to the surrounding neighborhood (Abrar 2021;

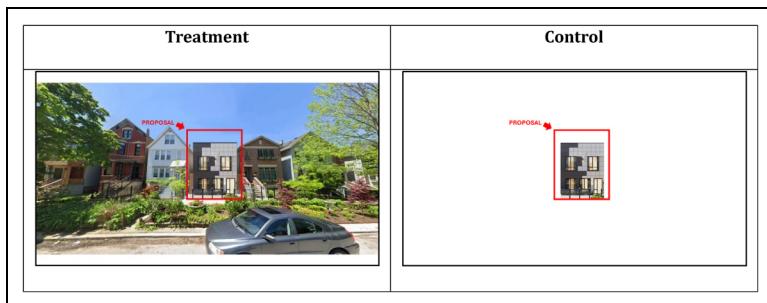
Table 1. Definition of Fit, Relative to Neighborhood Context.

		Building Height	
		Same	Different
Building Style	Same	<i>Fits</i>	Partially Fits
	Different	Partially Fits	Does Not Fit

Komez Daglioglu 2015). Contextualism is a broad concept which can prescribe that a new building respect the physical context of a neighborhood as well as its cultural history and traditions. This philosophy can be encapsulated by American architect Robert Venturi: “a building is not a self-contained object but a part in a whole composition relative to other parts and the whole” (Komez Daglioglu 2015, pp. 273–74). We focus specifically on “Physical Contextualism,” which emphasizes that new development should be harmonious with the physical characteristics of a neighborhood, such as building density, style, street layout, or topography (Højriis et al. 2014). We define a development as being contextual when it matches both the prevailing height and style of the immediate surrounding buildings (see Table 1).

H3: Buildings which fit the neighborhood context will be preferred relative to the same building without context. Conversely, those which do not fit the neighborhood context will be opposed at higher rates relative to the same building without context.⁸

This preference for buildings which fit is not driven by attitudes about a specific building’s height, style, parking, affordability, or otherwise. Rather, it is driven entirely by the interaction between the building’s attributes to the attributes of the surrounding buildings.


Research Design

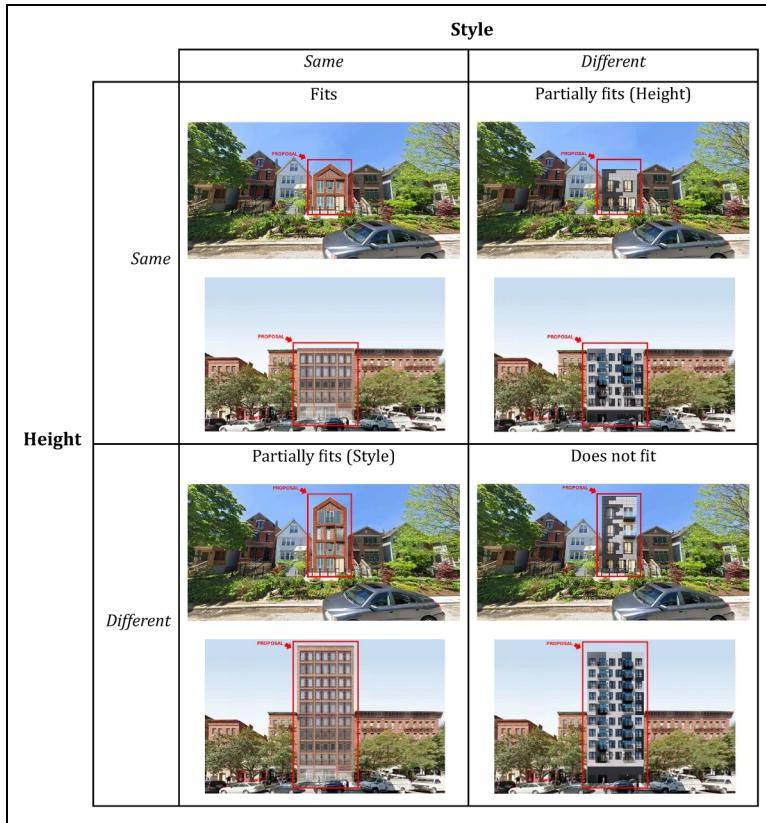
To test the effect of architecture and isolate preferences regarding contextual development, we conducted two survey experiments, one in the summer of 2024 (survey 1, $N=901$) and one in the winter of 2025 (survey 2, $N=659$).⁹ Both surveys sampled U.S. adults who live in the 30 largest metropolitan areas and live in a zip code with at least 500 people per square mile. This screens out low-density rural and exurban respondents, targeting respondents for whom new dense development is relevant.¹⁰ Unless otherwise noted, we combine these surveys (combined $N=1,252$).¹¹ (see Appendix A. Sampling, Balance, Representativeness).

Table 2. Context Experiment Design: Building Height and Style by Condition.

Treatment (With Neighborhood Context)	Control (No Context)
Fit	
2-story traditional building <i>in a 2-story traditional neighborhood</i>	2-story traditional building
5-story traditional building <i>in a 5-story traditional neighborhood</i>	5-story traditional building
Partial fit (Height)	
2-story modern building <i>in a 2-story traditional neighborhood</i>	2-story modern building
5-story modern building <i>in a 5-story traditional neighborhood</i>	5-story modern building
Partial fit (Style)	
4-story traditional building <i>in a 2-story traditional neighborhood</i>	4-story traditional building
10-story traditional building <i>in a 5-story traditional neighborhood</i>	10-story traditional building
Doesn't fit	
4-story modern building <i>in a 5-story traditional neighborhood</i>	4-story modern building
10-story traditional building <i>in a 5-story traditional neighborhood</i>	10-story traditional building

Table 2 summarizes the design. We asked each respondent to evaluate 8 building proposals, which vary on height (2, 4, 5, or 10 stories) and style (modern or traditional) in random order.¹² Each proposal shows a visual rendering of the proposed building and a text description (see Appendix for text). We randomize between-respondent if each of these buildings is shown with neighborhood context (treatment) or without neighborhood context (control).¹³ That is, respondents got all 8 buildings either with context or without context. Figure 1 shows an example of a treatment and control rendering. To test H1 and H2, we estimate the effects of height and style within the control arm. The comparison of the treatment to the control tests H3, the effect of context. Specifically, the treatment arm has 4 context conditions: the building fits, partially fits in style (fits in style but not height), partially fits in height (fits in height but not style), or doesn't fit (see Figure 2).¹⁴ Respondents in our treatment group only evaluate traditional style neighborhoods, a limitation of our design, but a decision which maximizes external validity, as these types of neighborhoods often experience the greatest pressures for and resistance to densification. Respondents in our treatment group saw all four context conditions in random order. Because the buildings are identical except for the presence or absence of context, we can assess the pure impact of context.

Figure 1. Example of treatment and control renderings.


Note: This shows an identical building with context (“treatment”) and without (“control”). In this example, the building is modern and two stories, and this treatment arm shows a fit in height but not style.

Importantly, this holds constant the building’s density, neutralizing any associations respondents have with buildings containing more units. If respondents dislike tall buildings because they have more units than short buildings, this association is equally present in the treatment and control arms (see Appendix D. Survey Instruments for all images).

As Appendix Figure B1 shows, the text description is identical for all buildings, holding constant the parking, the developer’s contribution (the developer will pay a tax), and the affordability and the percent of units set aside for that income. These attributes have been found to affect support for development (Hankinson and de Benedictis-Kessner 2024; Trounstine 2023). The rent and income level were customized to a respondent’s metropolitan area and remained fixed within respondent (see Appendix E. Affordability). This improves plausibility and removes measurement error about the perceived class of the tenants.¹⁵ For each building, we ask respondents for their level of support for the building on a 5-point Likert scale, ranging from Strongly Oppose to Strongly Support. We recode these ratings on a continuous 0–1 scale, where 1 is Strongly Support, for ease of interpretation.¹⁶ In survey 2, we also gauge behavioral intentions and assess the robustness of preferences to realistic trade-offs (explained below). In both surveys, we then asked respondents policy questions about housing development.

Does Building Architecture Affect Support for New Housing?

First, we test H1 and H2, estimating the effects of building height and style. We asked control respondents to evaluate all eight buildings in random order, without neighborhood context. The eight buildings vary in style and height.

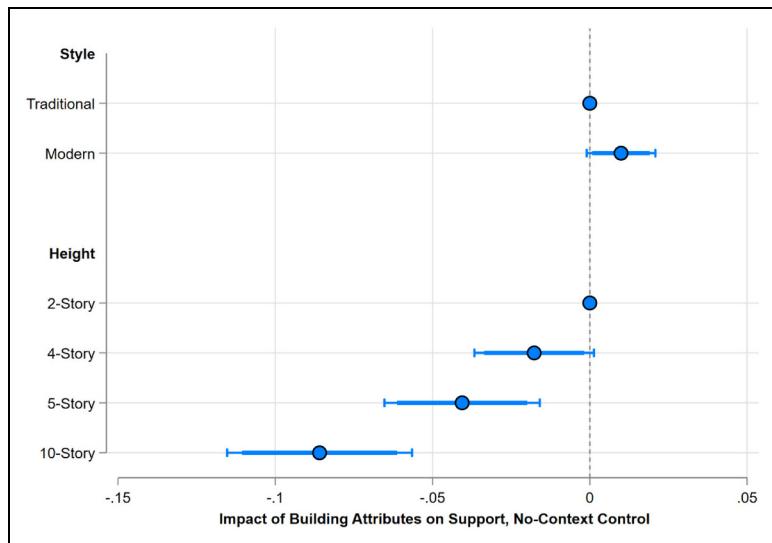


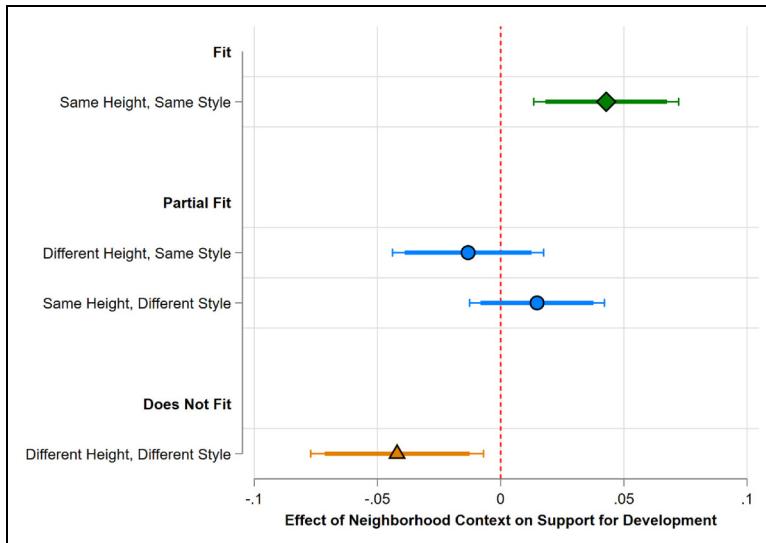
Figure 2. Context treatment conditions.

Note: The figure shows the eight treatment buildings. The four treatment conditions are: Fits (in height and style), Partially Fits (in height), Partially Fits (in Style), and Does Not Fit (in height and style). Each treatment condition includes two different neighborhoods, for robustness.

We regress support for the building on style and height, only among the control group. This analysis is within-respondent, so we use varying intercepts and clustered standard errors at the respondent level. We find that style has no effect, disconfirming our preregistered hypothesis that citizens prefer traditional style (H1). By contrast, height has a large, precise effect, confirming H2. Support for the building declines as its height increases (see Figure 3).

To be sure, this may be an artifact of the specific buildings we tested, or perhaps respondents read other attributes into style (such as construction quality). Nevertheless, this finding challenges the often-argued notion that most people prefer traditional buildings. In additional analysis, we find that

Figure 3. Effect of height and style on support for building proposal, no-context control.


Note: 90% confidence intervals in bold, 95% confidence intervals in caps. Varying intercept and clustered standard errors at the respondent level.

respondents rate the modern building as more “attractive” than the traditional building.¹⁷ In sum, without information about neighborhood context, style does not affect support, while height does.

Do Citizens Have Contextual Development Preferences?

Next, we test H3, our contextual preferences hypothesis. We predicted that people evaluate new buildings according to their architectural fit. This can help reveal whether distaste for density is not solely driven by concerns that adding more units will reduce property values, increase public goods congestion, or alter the neighborhood’s demographic composition. To test this hypothesis, we compare support for otherwise identical buildings across the treatment and control group. This analysis causally isolates the effect of showing neighborhood context on support for housing and the correspondent architectural fit condition created as a result, holding fixed all other attributes of the building, including style, height, and density.¹⁸

Compared to the identical buildings absent context, buildings that fit on both height and style are preferred by 4.3 percentage points (9.3%) (see Figure 4). Conversely, buildings that don’t fit are penalized by 4.2 percentage

Figure 4. Treatment effect of neighborhood context on support for building.

Note: Intercept varies at the CSA level, clustered standard errors at the CSA level. Models control for survey number. 90% confidence intervals in bold, 95% confidence intervals in caps.

points compared to identical buildings absent context (9.5%).¹⁹ That is, showing the neighborhood context increases the spread in support between buildings which fit and don't fit by 8.5 percentage points (18% over the average support for all eight buildings). A partial fit on either height or style has no impact. These results show that respondents have contextual development preferences. Buildings which fit are preferred while those that don't fit are disfavored. In addition, Appendix Table B1 and Appendix Figure B2 also show that taller buildings that fit in height are preferred to shorter buildings that don't fit, but only in the treatment arm, where a 5-story building is preferred over a 4-story building (by 5–7 percentage points, depending on style). In the no-context control, support falls as height increases. This finding helps confirm that these results are picking up on contextual preferences, rather than preferences about height or density. If concerns about density were driving results, we should not observe only respondents in our treatment arm preferring taller buildings over shorter ones.

In survey 2, we followed up with questions about costly behavioral intentions. These include: would attend a meeting to voice their opinion, would write to their local elected official, and what they would write (we count the number of words).²⁰ When the building doesn't fit, respondents are 7

percentage points (14.7%) more likely to say they would attend a meeting or write their local elected official compared to the identical control buildings ($p < .05$). This effect is larger still among frequent local voters (13 percentage points, or 30.2%, $p < .05$) and null among infrequent local voters.²¹ These intentions are unaffected when the building fits.²² While buildings that fit and don't fit elicit symmetric effects on *attitudes*, only buildings that don't fit affect *behavioral intentions*. This may help explain why opponents are overrepresented in local meetings (Einstein, Glick and Palmer 2019a; Sahn 2025). Opponents may take action against buildings that don't fit their neighborhood, while supporters of denser or modern buildings do not.²³

Who Cares About Neighborhood Context? Subgroup Effects

Whose preferences are affected by neighborhood context? We focus on two theoretically relevant cleavages in the urban politics literature: homeowners vs. renters, and urbanites vs suburbanites.

Homeowners have long been theorized to oppose new housing development due to financial self-interest, as new housing may pose a risk to their property values (Fischel 2005). Findings for renters are mixed. Some studies argue they are natural proponents of new supply, as new supply can reduce rents (Marble and Nall 2021) while other studies find that renters sometimes oppose new housing, perhaps due to fear of gentrification or displacement, or general skepticism that new supply reduces housing prices (Elmendorf, Nall and Oklobdzija 2025; Hankinson 2018; Hankinson, Magazinnik and Sands 2024). What do these findings suggest about homeowners' and renters' contextual development preferences? There is some evidence that suggests neighborhood "look and feel" affect the price of housing, with more architecturally homogenous neighborhoods having higher property values (Lindenthal 2020; Sachdeva, Fotheringham and Li 2022). If this is true (or, perceived as true) and homeowners' preferences are driven by self-interest, homeowners may be more responsive to buildings which fit, as this could improve their home values. Conversely, renters may be less responsive, as buildings which fit may raise rents.

Figure 5 shows the results. The effect of buildings which fit and don't fit (compared to the no-context control) is the same for homeowners and renters.²⁴ This suggests that concerns over property values and rents are not driving our treatment effect. While we did not ask about anticipated impacts on housing prices, for financially self-interested concerns to be driving our results, renters should anticipate that buildings which fit *decrease* rents while buildings which don't fit *increase* rent compared to the *same* buildings without context (as a reminder, we held all attributes other than neighborhood context fixed, including rent and affordability levels which were precisely defined

Figure 5. Treatment effect of neighborhood context, by subgroups.

Note: Intercept varies at the CSA level, clustered standard errors as the CSA level. Models control for survey number. 90% confidence intervals in bold, 95% confidence intervals in caps.

dollar amounts). The opposite should be true of homeowners. Given that recent literature has shown that homeowners and renters alike are skeptical of the ability of new construction to change housing prices (Elmendorf, Nall and Oklobdzija 2025), we find it unlikely that financial self-interest is driving our results, although we cannot conclusively rule out that this is the case.

The drastically different land-use regimes between suburbia and cities have long been a focus of urban politics scholars. That research documents the creation of suburbia and explores the motives behind the creation of exclusionary low-density zoning (Brouwer and Trounstine 2024; Sahn 2025; Schuetz 2009; Trounstine 2018, 2020). The suburban–urban cleavage in public opinion about housing development is less well documented but has garnered increasing attention at the national level (Rodden 2019). For example, symbolic attitudes about cities better explain opposition to new housing than homeownership (Broockman, Elmendorf and Kalla 2024). Additionally, suburbanites have strong antidensity preferences and a strong affinity toward the suburban status quo, and many specifically moved to suburbs to seek a lower density way of life (Ternullo 2024).

Finally, while Trounstine (2023) finds no difference in support for apartment buildings based on urban or suburban respondent location, suburbanites do prefer single-family homes. Based on these findings, we hypothesize that suburbanites operate with a mental model that new buildings should fit. Buildings that don't fit violate these expectations, thereby activating opposition. The opposite is true for urbanites, who would not expect all buildings to have similar style and height. For them, buildings that fit the neighborhood are less expected but nevertheless preferred if offered. Thus, we hypothesized that urbanites will reward development that fits and suburbanites will penalize development that doesn't fit.²⁵

As Figure 5 shows, the results are somewhat consistent with that expectation. Buildings which fit see increased support among urban respondents. Buildings which don't fit see lower support among suburbanites. That said, the fit effects for urban and suburban respondents are not statistically distinguishable. Urbanites and suburbanites are similarly responsive to fit.

Appendix Figure 5 also shows that the effects of neighborhood context for buildings which fit and don't are roughly similar by party identification, age, and race. Together, these suggest that contextual development preferences are widely held across many demographic and political cleavages. While we cannot rule out alternative mechanisms, such as symbolic or racial considerations of who will inhabit new buildings, these findings help assuage concerns about alternative mechanisms, rather than preferences for contextual development specifically, driving our findings.²⁶

How Strong Are Contextual Development Preferences? Imposing Realistic Trade-offs

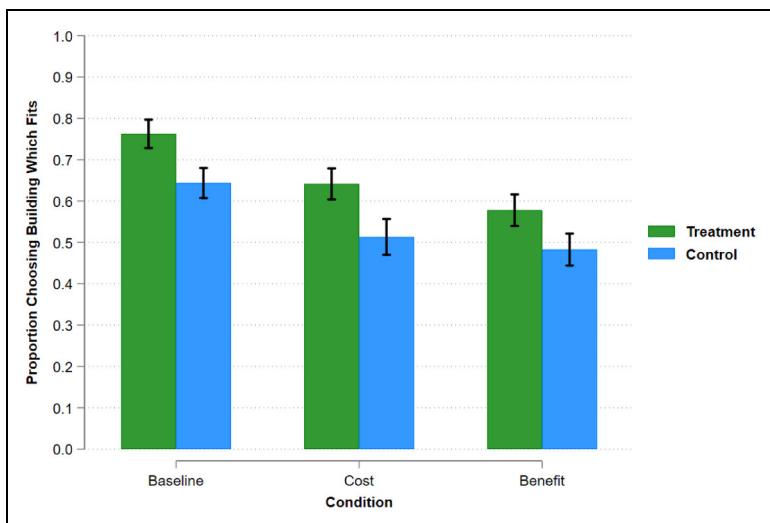

We found that citizens reward buildings which fit and penalize buildings which don't fit the architectural context of neighborhoods. However, policy experts underscore that solving the housing crisis requires additional density, which often requires development which doesn't fit. Taller multifamily development decreases marginal costs from additional floors (Eriksen and Orlando 2022). Additionally, a building's shell and façade often make up around 25%–30% of total hard construction costs, and traditional building materials like brick are more expensive (Hoyt and Schuetz 2020). Therefore, traditional and short buildings carry a higher cost. The result is that development which fits the architectural context of neighborhoods often houses fewer people and may be less affordable. We ask whether contextual development preferences give way to trade-offs in cost and benefit. Does imposing a cost erode support for buildings which fit? By the same token, does opposition to buildings which don't fit soften with compensation?

Table 3. Trade-offs Experiment Design.

	Treatment (With Neighborhood Context)		Control (No Context)	
Baseline	Building A Fits 5-story traditional	Building B Doesn't Fit 10-story modern	Building A 5-story traditional	Building B 10-story modern
Cost	+ \$500,000 to developer	Same as baseline	+ \$500,000 to developer	Same as baseline
Benefit	Same as baseline	+ \$500,000 for community	Same as baseline	+ \$500,000 for community

To answer these questions, in survey 2, we showed each respondent two buildings they had seen before. All respondents saw the same two buildings: a 5-story traditional building (A), and a 10-story modern building (B). Control respondents saw these two buildings without context, while treatment respondents saw these same buildings with context, as they had before. Building A fits, while Building B doesn't fit. We asked respondents to choose A or B. Then, we exposed respondents to two additional conditions in random order—“cost” and “benefit”—and asked them to choose between the same two buildings after each condition. In the benefit condition, we informed respondents that new buildings sometimes provide community benefits such as contributions to a park, that traditional style buildings are more expensive and have less money left for such benefits, and the modern building will provide \$500,000 in community benefits while the traditional building will not. In the cost condition, we informed respondents that local governments sometimes help new buildings cover construction costs with grants or tax cuts paid for by tax increases or service cuts, that traditional buildings are more expensive, and the traditional building will be given \$500,000 while the modern building will not.²⁷ (see Appendix D2. Survey 2 for question wording). These trade-offs mimic realistic trade-offs. Community benefit agreements are more typical for larger buildings, while smaller buildings which fit are typically more costly to taxpayers (see Table 3).²⁸ As a result, we do not fully randomize (i.e., we do not provide a community benefit agreement for the shorter traditional building) because our aim is to test what it would take to pull people away from buildings which fit.

We hypothesized that costs inflicted by the building which fits, and benefits offered by the building which doesn't fit, mute the preference toward buildings that fit and eliminate the effect of context.²⁹ Figure 6 displays our results. First, in the baseline condition, we see the expected, familiar preference for fit. Specifically, in the baseline question, where respondents are asked to choose between the building which fits and the building which

Figure 6. Preference for building which fits, by cost/benefit Condition and by context treatment.

Note: Intercept varies at the respondent level, clustered standard errors as the respondent level. 95% confidence intervals in caps.

does not fit, respondents in the treatment arm chose the building that fits more often—by 12 percentage points relative to the control arm—replicating our findings that context matters.

When we impose a cost for the building which fits, support for that building falls by 12 percentage points in the treatment group and 13 percentage points in the control group. Likewise, when we provide a benefit from the building which doesn't fit, support for the building which fits falls, by 18 percentage points in the treatment group and 16 percentage points in the control group.³⁰ Costs and benefits do soften support for buildings that fit, as expected.

However, while citizens are responsive to these trade-offs, the treatment effect of neighborhood context remains robust. The 12 point context effect in the baseline hardly differs from the 13 and 9 point effects in the cost and benefit conditions.³¹ This disconfirms our expectation that trade-offs eliminate contextual effects. Contextual development preferences persist in the face of competing considerations. Moreover, buildings which fit remain popular even with these trade-offs: even in the benefit condition, where the loss of support for the building that fits is greatest, 58% of respondents still support that building (51% in our weighted sample—see Appendix Table B4).

Finally, one may wonder whether decisions about specific buildings say much about policy preferences. To address this concern, we asked respondents if they would support or oppose each of a list of hypothetical policies in their city. Two relate directly to contextual development: (1) contextual zoning (“pass housing rules that require new apartments to fit into the existing neighborhood height and style”) and (2) historic districting (“pass housing rules that stop the demolition of existing buildings in historic neighborhoods and require local government approval for all new construction”). We recode the 4-point response scales into binary support or opposition for each policy.³² We find large majority support for these contextual policies: 84% support contextual zoning ($SD = 0.37$), and 82% support historic districting ($SD = 0.38$). These are among the most popular of all housing policies we surveyed (see Appendix Table B2).³³ Moreover, these policy preferences correlate with building fit preferences: respondents who chose buildings that fit over buildings that don’t fit are 15 points more supportive of contextual zoning and 13 points more supportive of historic districting (see Appendix Table B5). Finally, these policy preferences for contextual zoning and historic districting are not an artifact of generalized opposition to housing or “NIMBYism”; support for these policies is identical among opponents and supporters of upzoning, a policy allowing more development citywide (see Appendix Table B5).^{34,35}

Discussion

Our findings help advance our understanding of public opinion about housing development. Consistent with many prior studies, we find that citizens dislike dense development. However, unlike prior studies, we find that preferences over the density of new buildings respond to *existing* neighborhood density. That is, citizens have contextual development preferences. They do not oppose large buildings only because they dislike large buildings. In fact, they prefer somewhat larger buildings that fit over smaller buildings that don’t fit the neighborhood context. If citizens’ opposition to density was solely driven by concerns over congestion or neighborhood demographic change, then preferences over building height should not change with neighborhood context, and yet we find they do. While our analysis cannot definitively rule out self-interested expectations over property values and rents, our control arm holds those concerns constant by showing the identical building with the identical number of units, rent, and affordability levels. In addition, homeowners do not disproportionately prefer buildings that fit over renters. Taken together, the results suggest that respondents support buildings which fit as a value in-and-of-itself.

The existence of contextual development preferences has implications for the prospects of land-use regulatory change and the persistence of segregation. Past decisions over land-use regulations can “lock in” said regulations through path dependence (Mahoney 2000). Land-use regulations have a profound, long-term impact on the built-environment (Shertzer, Twinam and Walsh 2018). We show that the neighborhoods created by these regulations anchor preferences over new development. This seems to be particularly salient in suburbs, where development which don’t fit may face particular challenges (Schuetz 2009). We show such developments mobilize costly political behavior, including meeting attendance and contacting local representatives. Therefore, neighborhoods created by exclusionary zoning regulations of the past can be difficult to change. Even if citizens no longer harbor explicitly racially exclusionary attitudes—an attitude linked to the initial adoption of many stringent land-use regulations—their desire for contextual fit makes densification difficult, limiting the opportunity for newcomers to move into high opportunity neighborhoods, further entrenching racial and economic segregation (Sahn 2025; Trounstine 2020).

Seemingly innocuous contextual preferences for buildings that fit may already be influencing policy design. For example, in an op-ed announcing their plan for new affordable housing, Representative Alexandria Ocasio-Cortez and Senator Tina Smith argued that “we know that housing looks a lot different in Bemidji, Minn., than in the Bronx. It shouldn’t be a one-size-fits-all approach. That’s why our bill would task local governments … with developing homes that *blend seamlessly into the landscape of the town* and fit the needs of the people living in them.”³⁶ (Emphasis added). Moreover, we find that policies that respect neighborhood context are very popular. We find that 84% and 82% of respondents support contextual zoning and historic districting regulations, respectively. Support is high even among increasingly relevant supporters of pro-density policies, often called YIMBYs (for “yes-in-my-backyard”), suggesting that preferences for contextual development are not simply tapping NIMBY opposition to all housing. However, these contextual policies often end up restricting development. For example, the contextual zoning regulations adopted in many (primary lower-density affluent) neighborhoods in New York City or historic districts adopted in many cities nationwide deepen the housing affordability crisis and entrench racial and economic segregation (Bologna Pavlik and Zhou 2023; Dublin-Boc 2023; McCabe and Ellen 2016; Rothwell and Massey 2009; Trounstine 2020; Zhou 2021). While the preference toward contextual development may be innocuous, the consequences of context-preserving regulations are not.

Our findings imply that policy makers should consider the future implications of land-use decisions. Policy makers should be careful to design current

regulations in such a way that they do not preclude future densification. For example, encouraging a diversity of building heights and styles in new development districts rather than zoning for uniformity could help soften future opposition to dense development. However, altering current regulations is likely difficult, as our findings reinforce the sense that there are no easy ways to increase support for dense multifamily housing. Solving the housing affordability crisis involves construction that is not a perfect match for existing neighborhoods, requiring greater densities (Ahlfeldt, Baum-Snow and Jedwab 2023).³⁷ Since traditional building materials are more expensive than modern alternatives, and given the very small improvements in public support for traditional over modern styles, it's perhaps no surprise that architects and developers often chose more modern building styles. While creating community benefit agreements for buildings which don't fit did improve support in our surveys, most of our respondents still preferred the building which fit, suggesting that the amount of money necessary for denser development to overcome opposition may in many cases be economically infeasible (Hankinson and de Benedictis-Kessner 2024). That said, a more hopeful conclusion might be that even in low density areas, "out of scale" buildings still have decent support, despite being twice as tall as the neighborhood, modern, and having no parking.

Finally, for scholars of public opinion around housing development, we hope our findings and methodological choices help inform future work. Scholars who want to understand public opinion about density should be careful to avoid inadvertently picking up neighborhood context effects, particularly when new developments are being evaluated in a respondent's own neighborhood. Asking respondents about the density of their neighborhoods, and custom tailoring building proposals as ratios of existing surroundings, rather than comparing absolute levels, may help sharpen estimates for preferences around density and help avoid conflating these preferences with those anchored by neighborhood context. Additionally, we find little evidence that our inclusion of images helped reduce variance in our outcome (see Appendix Table C1) and find that building style has little independent effect. Respondents seem to be capable of giving high quality preferences over new housing development from text-only descriptions, even if images are more externally valid, lessening the need for images unless there is a theoretically relevant reason for their inclusion (such as interest in neighborhood context or stylistic effects).

This paper measures citizen preferences about building style and height, and how contextual information about existing neighborhoods alters development preferences. We present a novel research strategy that isolates this interactive effect of neighborhood context on building preferences. This demonstrates how preferences over new development are dependent on

context, informed by past land-use decisions. This adds a new explanation to our understanding of motives behind opposition to new dense housing. Additionally, this study suggests that contextual development preferences may make existing land-use regulations particularly hard to modify and helps inform future research that should be cognizant of how treatments interact with existing respondent-level neighborhood conditions.

Acknowledgments

The authors would like to thank Gustavo Novoa, Michael Hankinson, and attendees of the Princeton Research in Experimental Social Science (PRESS) workshop and the 2024 American Political Science Association (APSA) Conference panel “Home is Where the City Is: Supporting Defending, and Designing Urban Housing” for their feedback.

ORCID iDs

Adrian Pietrzak <https://orcid.org/0000-0003-4385-3196>

Tali Mendelberg <https://orcid.org/0000-0002-4494-7541>

Ethical Approval and Informed Consent Statements

This study was approved by the Princeton University Institutional Review Board (approval no. 16799) on May 29, 2024, for our first survey and December 17, 2024, for our second survey. Respondents gave consent (selected yes or no) before starting the survey.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Data Availability Statement

Deidentified survey data and replication code is available online and can be accessed through the Harvard Dataverse: <https://doi.org/10.7910/DVN/9YEQUU>.

Supplemental Material

Supplemental material for this article is available online.

Notes

1. The lack of housing supply is particularly acute in large cities with high economic opportunity, such as, New York, San Francisco, or Boston, but has increasingly afflicted smaller cities or towns (Gyourko et al. 2013).
2. Even in urban centers, which offer a large number of high-quality jobs and generate substantial demand for housing, stringent land-use regulations and opposition to new multifamily housing have constrained the supply of housing and created shortages of dense housing (Gyourko et al. 2021; Hsieh and Moretti 2019).
3. This study had two stylistic levels: “traditional style, like other local buildings,” and “a new modern style.”
4. This study defines a building proposal as a fit if the target area (1) has at least five buildings, (2) one of which was built post-1992, and (3) one is a residential building. Otherwise, the buildings do not fit.
5. A common term used by opponents of new housing is that new housing is “out-of-scale” Talen (2024).
6. We triple the number of units as we double the number of floors, to account for the fact that building area increases as a cubic function. This follows the density to height rule used by Hankinson & de Benedictis-Kessner (2024).
7. These correspond to H1 and H2 in our preanalysis plan: <https://osf.io/fsj9z>.
8. Corresponds to H3 and H5 in the preanalysis plan.
9. We used Qualtrics to administer the survey. Respondent recruitment was conducted by survey firm Bovitz-Forthright. This study was approved by the Princeton University Institutional Review Board Protocol No. 16799.
10. These areas represent around 180 million Americans. We set this minimum density threshold to ensure that the images of new developments and their neighborhood contexts are plausible for respondents. This sampling reflects a blend of prior sampling strategies used by other scholars (Elmendorf et al. 2025; Marble and Nall 2021; Trounstine 2023). (See Appendix A1. Sampling Strategy for more details).
11. In all analyses, we include a dummy variable for the survey number to account for time-varying effects across the surveys. Respondents of survey 1 were excluded from taking survey 2.
12. The number of units increased proportionately with height such that 2-story buildings had 3 units, 4-story had 9 units, 5-story had 30 units, and 10-story had 90 units.
13. In Survey 1, we included an additional between-subjects pure control arm, which did not see any images and evaluated text only ($N = 308$). We used this arm to evaluate the effect of style, by comparing support for same height buildings without images against the no-context control with images. We also pre-registered (H6 in the preanalysis plan) a comparison of the standard deviations to assess if

showing images reduces the variance in support. We found no difference between the no-image pure control and the control with images. The results are in Appendix C. Pre-Registered Analyses.

14. All treatment neighborhoods show the traditional style and vary neighborhood height: we use a low-density neighborhood where the prevailing height is 2-stories, and a medium-density neighborhood where the prevailing height is 5-stories. We restrict the 2-and-4 story buildings to the low-density neighborhood, and the 5-and-10 story buildings to the medium-density neighborhood. The pictured neighborhoods are Lincoln Park, Chicago (low-density neighborhood) and Upper West Side, New York City (medium-density neighborhood), as they are traditional style neighborhoods that have been historically designated and are reflective of the types of places where proposals for new apartment buildings face considerable resistance.
15. To account for treatment variation at the CSA level (affordability and rent levels), we cluster standard errors at the CSA level and run across-respondent models with random intercepts at the CSA level (results are robust to other model specifications, such as OLS or fixed effects at the CSA level).
16. We also measured demographics, political participation, and attention and data quality checks.
17. In a separate task among our pure control arm, we asked respondents to evaluate the attractiveness of our buildings on a scale from “very unattractive” to “very attractive”. We found they rated the modern building as more attractive, by 8.4 percentage points (14.8%).
18. This analysis combines low and medium neighborhood density. We preregistered a separate analysis of each neighborhood density, but since they yield similar results, we have combined the two for ease of interpretation.
19. This effect is similar across the low- and medium- density neighborhoods, although only statistically significant at the $p < .05$ level for the low-density neighborhood. See Figure B3 in Appendix B. Additional Figures.
20. To reduce survey length and avoid respondent fatigue, respondents were only followed-up about buildings most relevant for them: for suburbanites, low-density buildings, for urbanites, medium-density buildings. We also only follow-up on buildings which fit the context and do not fit the context, dropping the follow-up questions for partial fits.
21. This subgroup analysis was not preregistered. Frequent local voters are respondents who identified they vote “often” or “always” in local elections.
22. The effect is also null among frequent (8.6 percentage points, $p = .155$) and infrequent local voters (−6.3 percentage points, $p = 0.152$).
23. Preference intensity shows a similar pattern to behavioral intention. We asked opponents if they would rather see something built but with modifications, or nothing built. Buildings which fit see no change in intense opposition, whereas buildings which don’t fit see a 5-percentage point increase in respondents

saying they would rather see nothing built at all ($p < .05$). See Appendix Figure B4.

- 24. Partial fit conditions (not shown) are similarly null among the subgroups. We did not pre-register a prediction by homeownership status.
- 25. Corresponds to H12 and H13 in the pre-analysis plan for survey 2.
- 26. For example, it's possible that respondents may have racialized interpenetrations of fit (such as preference for racial homophily) given that our treatment neighborhood images are taken from places which are affluent and White. However, our treatment effects are similar among White Republicans as they are among White Democrats and non-White Democrats. Alternatively, recent scholarship suggests age is a powerful predictor of "yes-in-my-backyard" (YIMBY) attitudes (Holleran 2020; Einstein et al. 2025), but we find similar treatment effects across all our age groups.
- 27. We hold fixed the value of both the cost and benefit at \$500,000, based on values in Hankinson and de Benedictis-Kessner (2024).
- 28. We randomized whether the building receiving the cost or benefit appears on the left or right of the screen, so building labels A or B are flipped for some respondents, to avoid nuisance effects.
- 29. Corresponds to Hypotheses H9 and H10 in the preanalysis plan.
- 30. There is no statistically significant difference between the cost and benefit conditions.
- 31. These effects in the cost and benefit conditions are statistically significant at the .01 and .05 levels, respectively.
- 32. "Strongly support" or "somewhat support" is coded 1, and "strongly oppose" is "somewhat oppose" are 0. We exclude respondents who skipped the question.
- 33. In both surveys, we asked all respondents about their support for: historic preservation, contextual zoning (where new buildings must fit with surrounding neighborhoods), bans on new housing (similar to the San Francisco Proposition featured in Hankinson (2018)), and upzoning (allowing for denser housing, for both smaller and larger development). The combined N for these five policies is about 1,550. In survey 1, respondents were also asked about other policies, reported in Appendix Table B2.
- 34. Our measure of support for upzoning is: "Pass housing rules that allow property owners to build large apartment buildings on any residential lot, such as towers or other high-rises."
- 35. We preregistered but did not find treatment effects on support for any policies. See Appendix Table C2.
- 36. Ocasio-Cortez, A. and Smith, T. (Sept. 18, 2024). "Our Solution to the Housing Crisis." *The New York Times*.
- 37. We do not find, for example, that changing the style of denser development to match the existing neighborhood does much to improve public support, with

the independent effect of style matching neighborhood surroundings being small, only 1.9 percentage points. The negative impact of density far outweighs any improvement in support harmonizing style.

References

Abrar, Naeem. 2021. "Contextuality and Design Approaches in Architecture." *International Journal of Education* 2 (11): 294–305. <https://www.ijess.org/wp-content/uploads/2021/11/IJESSP24510090.pdf>.

ADAM Architecture. 2009. "YouGov Survey Results Show That People Prefer Traditional Rather than Contemporary Buildings." *ADAM Architecture*. <https://adamarchitecture.com/publication/yougov-survey-2009/>.

Ahlfeldt, Gabriel M., Nathaniel Baum-Snow, and Remi Jedwab. 2023. The Skyscraper Revolution: Global Economic Development and Land Savings. SSRN Scholarly Paper No. 4649000. Social Science Research Network. <https://doi.org/10.2139/ssrn.4649000>.

Banzhaf, H. 2014. "The Market for Local Public Goods." *Case Western Reserve Law Review* 64 (4): 1441. <https://scholarlycommons.law.case.edu/caselrev/vol64/iss4/4>.

Been, Vicki, Ingrid Gould Ellen, and Katherine O'Regan. 2019. "Supply Skepticism: Housing Supply and Affordability." *Housing Policy Debate* 29 (1): 25–40. <https://doi.org/10.1080/10511482.2018.1476899>.

Been, Vicki, Ingrid Gould Ellen, and Katherine O'Regan. 2024. "Supply Skepticism Revisited." *Housing Policy Debate*, 1–18. <https://doi.org/10.1080/10511482.2024.2418044>.

Bologna Pavlik, Jamie, and Yang Zhou. 2023. "Are Historic Districts a Backdoor for Segregation? Yes and No." *Contemporary Economic Policy* 41 (3): 415–34. <https://doi.org/10.1111/coep.12590>.

Broockman, David, Christopher S. Elmendorf, and Joshua Kalla. 2024. "The Symbolic Politics of Housing." Preprint, August 19. <https://doi.org/10.31219/osf.io/surv9>

Brouwer, N. R., and Jessica Trounstine. 2024. "NIMBYs, YIMBYs, and the Politics of Land Use in American Cities." *Annual Review of Political Science* 27: 165–84. (Volume 27, 2024). <https://doi.org/10.1146/annurev-polisci-041322-041133>.

Capps, Kriston. 2017. "The Problem With 'Fast-Casual Architecture'." *Bloomberg.Com*. October 17. <https://www.bloomberg.com/news/articles/2017-10-17/washington-d-c-s-wharf-is-fast-casual-design-so>.

Carroll, Maurice. 1983. "Ban On 'Silver' Buildings is Approved by the City." *The New York Times*. New York. March 4. <https://www.nytimes.com/1983/03/04/nyregion/ban-on-silver-buildings-is-approved-by-the-city.html>.

Chetty, Raj, Nathaniel Hendren, and Lawrence Katz. 2016. "The Effects of Exposure to Better Neighborhoods on Children: New Evidence from the Moving to

Opportunity Project.” *American Economic Review* 106 (4): 855–902. <https://doi.org/10.1257/aer.20150572>

Colburn, Gregg, and Clayton Aldern. 2022. *Homelessness Is a Housing Problem: How Structural Factors Explain U.S. Patterns*. Oakland, CA: University of California Press.

Dublin-Boc, Jenna L. 2023. “Zoning for Character: Contextual Rezoning and Socioeconomic Change in New York City Neighborhoods, 1986–2019.” *Land Use Policy* 134 (November): 106910. <https://doi.org/10.1016/j.landusepol.2023.106910>.

Einstein, Katherine Levine, David M. Glick, and Maxwell Palmer. 2019a. *Neighborhood Defenders: Participatory Politics and America’s Housing Crisis*. Cambridge, UK: Cambridge University Press. <https://doi.org/10.1017/9781108769495>.

Einstein, Katherine Levine, Maxwell Palmer, and David M. Glick. 2019b. “Who Participates in Local Government? Evidence from Meeting Minutes.” *Perspectives on Politics* 17 (1): 28–46. <https://doi.org/10.1017/S153759271800213X>.

Einstein, Katherine Levine, Maxwell Palmer, Ellis Hamilton, and Ethan Singer. 2025. “Age and Homeownership Drive the Local Turnout Gap.” *Urban Affairs Review*. <https://doi.org/10.1177/10780874251371695>.

Elmendorf, Christopher S., Clayton Nall, and Stan Oklobdzija. 2025. “The Folk Economics of Housing.” *Journal of Economic Perspectives* 39 (5): 45–66. <https://doi.org/10.1257/jep.20241428>.

Eriksen, Michael D., and Anthony W. Orlando. 2022. “Returns to Scale in Residential Construction: The Marginal Impact of Building Height.” *Real Estate Economics* 50 (2): 534–64. <https://doi.org/10.1111/1540-6229.12357>.

Fischel, William. 2005. *The Homevoter Hypothesis*. Cambridge, MA: Harvard University Press.

Ganong, Peter, and Daniel Shoag. 2017. “Why Has Regional Income Convergence in the U.S. Declined?” *Journal of Urban Economics* 102 (November): 76–90. <https://doi.org/10.1016/j.jue.2017.07.002>.

Glaeser, Edward L., and Joseph Gyourko. 2002. “The Impact of Zoning on Housing Affordability.” Working Paper No. 8835. Working Paper Series. National Bureau of Economic Research, March. <https://doi.org/10.3386/w8835>.

Glaeser, Edward L., Joseph Gyourko, and Raven E. Saks. 2005. “Why Have Housing Prices Gone Up?” *American Economic Review* 95 (2): 329–33. <https://doi.org/10.1257/000282805774669961>.

Goldberger, Paul. 2014. “Too Rich, Too Thin, Too Tall?” *Vanity Fair*. April 9. <https://archive.vanityfair.com/article/2014/5/too-rich-too-thin-too-tall>.

Gyourko, Joseph, Jonathan S. Hartley, and Jacob Krimmel. 2021. “The Local Residential Land Use Regulatory Environment Across U.S. Housing Markets: Evidence from a New Wharton Index.” *Journal of Urban Economics* 124 (July): 103337. <https://doi.org/10.1016/j.jue.2021.103337>.

Gyourko, Joseph, Christopher Mayer, and Todd Sinai. 2013. "Superstar Cities." *American Economic Journal: Economic Policy* 5 (4): 167–99. <https://doi.org/10.1257/pol.5.4.167>.

Gyourko, Joseph, Albert Saiz, and Anita Summers. 2008. "A New Measure of the Local Regulatory Environment for Housing Markets: The Wharton Residential Land Use Regulatory Index." *Urban Studies* 45 (3): 693–729. <https://doi.org/10.1177/0042098007087341>.

Hamer, David. 2000. "Learning from the Past: Historic Districts and the New Urbanism in the United States." *Planning Perspectives* 15 (2): 107–22. <https://doi.org/10.1080/026654300364047>.

Hankinson, Michael. 2018. "When Do Renters Behave Like Homeowners? High Rent, Price Anxiety, and NIMBYism." *American Political Science Review* 112 (3): 473–93. <https://doi.org/10.1017/S0003055418000035>.

Hankinson, Michael, and Justin de Benedictis-Kessner. 2024. "How Self-Interest and Symbolic Politics Shape the Effectiveness of Compensation for Nearby Housing Development." *Journal of Public Policy, October* 21: 1–24. <https://doi.org/10.1017/S0143814X24000199>.

Hankinson, Michael, Asya Magazinnik, and Melissa L. Sands. 2024. *The Policy Adjacent: How Affordable Housing Generates Policy Feedback Among Neighboring Residents*. OSF. Preprint. <https://doi.org/10.31235/osf.io/769s8>.

Hinds, Michael Decourcy. 1984. "Battling to Control E. 96th Growth." *Real Estate.* *The New York Times*. May 13. <https://www.nytimes.com/1984/05/13/realestate/battling-to-control-e-96th-growth.html>.

Højriis, Jonas, Ivan Tengbjaerg Herrmann, Per Sieverts Nielsen, and Paul Bulkeley. 2014. "A Comparative Study of Contextual Urban Design Approaches in the UK and DK: 3rd International Workshop on Design in Civil and Environmental Engineering." *Proceedings of the 3rd International Workshop on Design in Civil and Environmental Engineering*, 37–46. <https://doi.org/10.4122/dtu:2881>.

Holleran, Max. 2020. "Millennial 'YIMBYs' and Boomer 'NIMBYs': Generational Views on Housing Affordability in the United States." *The Sociological Review* 69 (4): 846–861. <https://doi.org/10.1177/0038026120916121>.

Hoyt, Hannah, and Jenny Schuetz. 2020. "Thoughtful Design Can Create High-Quality Affordable Multifamily Housing." *Joint Center for Housing Studies*. June 18. <https://www.jchs.harvard.edu/blog/affordable-housing-doesnt-have-to-look-cheap-inside-or-out>.

Hsieh, Chang-Tai, and Enrico Moretti. 2019. "Housing Constraints and Spatial Misallocation." *American Economic Journal: Macroeconomics* 11 (2): 1–39. <https://doi.org/10.1257/mac.20170388>.

Hunt, Bradford. 2015. "Myth #2: Modernist Architecture Failed Public Housing.." In *Public Housing Myths: Perception, Reality, and Social Policy*, edited by Nicholas Bloom, Fritz Umbach, and Lawrence Vale, 47–63. Cornell University Press. <https://www.jstor.org/stable/10.7591/j.ctt20fw5x1>.

Joint Center for Housing Studies. 2024. *Housing Cost Burdens Climb to Record Levels (Again) in 2023*. December 3. <https://www.jchs.harvard.edu/blog/housing-cost-burdens-climb-record-levels-again-2023>.

Kodé, Anna. 2023. “America, the Bland.” *The New York Times*. January 20. <https://www.nytimes.com/2023/01/20/realestate/housing-developments-city-architecture.html>.

Komez Daglioglu, Esin. 2015. “The Context Debate: An Archaeology.” *Architectural Theory Review* 20 (2): 266–79. <https://doi.org/10.1080/13264826.2016.1170058>.

Krimmel, Jacob. 2022. “Reclaiming Local Control: School Finance Reforms and Housing Supply Restrictions.” *Federal Reserve Board Working Paper*. https://static1.squarespace.com/static/5f75531c54380e4fb4b0f839/t/620320d5ce8b010bca2552af/1644372186832/Krimmel_HousingSupply_SchoolFinance_draft_mostrecent.pdf.

Larsen, Martin, and Niels Nyholt. 2024a. *Understanding Nimbyism as Local Preservationism*. OSF. Preprint, October 14. <https://doi.org/10.31219/osf.io/n2cme>.

Larsen, Martin, and Niels Nyholt. 2024b. “Understanding Opposition to Apartment Buildings.” *Journal of Political Institutions and Political Economy* 5 (1): 29–46. <https://doi.org/10.1561/113.00000092>.

Lee, Barrett A., Kimberly A. Tyler, and James D. Wright. 2010. “The New Homelessness Revisited.” *Annual Review of Sociology* 36 (August): 501–21. <https://doi.org/10.1146/annurev-soc-070308-115940>.

Lindenthal, Thies. 2020. “Beauty in the Eye of the Home-Owner: Aesthetic Zoning and Residential Property Values.” *Real Estate Economics* 48 (2): 530–55. <https://doi.org/10.1111/1540-6229.12204>.

Mahoney, James. 2000. “Path Dependence in Historical Sociology.” *Theory and Society* 29 (4): 507–48. <https://www.jstor.org/stable/3108585>.

Marble, William, and Clayton Nall. 2021. “Where Self-Interest Trumps Ideology: Liberal Homeowners and Local Opposition to Housing Development.” *The Journal of Politics* 83 (4): 1747–63. <https://doi.org/10.1086/711717>.

Mattheis, Mike, and Jason Sorens. 2024. “Framing Affordable Housing: An Experimental Test of Changing Attitudes.” *Housing Studies* 39 (4): 1049–65. <https://doi.org/10.1080/02673037.2022.2101630>.

McCabe, Brian J., and Ingrid Gould Ellen. 2016. “Does Preservation Accelerate Neighborhood Change? Examining the Impact of Historic Preservation in New York City.” *Journal of the American Planning Association* 82 (2): 134–46. <https://doi.org/10.1080/01944363.2015.1126195>.

National Civic Art Society. 2020. *Americans’ Preferred Architecture for Federal Buildings*. <https://www.civicart.org/americans-preferred-architecture-for-federal-buildings>.

National Park Service. 2012. “Working on the Past in Local Historic Districts.” April 15. <https://web.archive.org/web/20120415130022/http://www.nps.gov/tps/education/workingonthepast/index.htm>.

O'Flaherty, Brendan. 2004. "Wrong Person and Wrong Place: For Homelessness, the Conjunction Is What Matters." *Journal of Housing Economics* 13 (1): 1–15. <https://doi.org/10.1016/j.jhe.2003.12.001>.

O'Grady, Tom. 2020. *NIMBYism as Place-Protective Action: The Politics of Housebuilding*. OSF. Preprint, October 2. <https://doi.org/10.31235/osf.io/d6pzv>.

Osman, Suleiman. 2011. *The Invention of Brownstone Brooklyn: Gentrification and the Search for Authenticity in Postwar New York*. Oxford University Press.

Preservation Alliance for Greater Philadelphia. 2007. *Sense of Place: Design Guidelines for New Construction in Historic Districts*. https://preservationalliance.com/wp-content/uploads/2023/01/SenseofPlace_final.pdf.

Rodden, Jonathan A. 2019. *Why Cities Lose: The Deep Roots of the Urban-Rural Political Divide*. Basic Books.

Rothwell, Jonathan, and Douglas S. Massey. 2009. "The Effect of Density Zoning on Racial Segregation in U.S. Urban Areas." *Urban Affairs Review* 44 (6): 779–806. <https://doi.org/10.1177/1078087409334163>.

Sachdeva, Mehak, Stewart Fotheringham, and Ziqi Li. 2022. "Do Places Have Value?: Quantifying the Intrinsic Value of Housing Neighborhoods Using MGWR." *Journal of Housing Research* 31 (1): 24–52. <https://doi.org/10.1080/10527001.2021.2003505>.

Sahn, Alexander. 2025. "Public Comment and Public Policy." *American Journal of Political Science* 69 (2): 685–700. <https://doi.org/10.1111/ajps.12900>.

Sahn, Alexander. 2025. "Racial Diversity and Exclusionary Zoning: Evidence from the Great Migration.." *The Journal of Politics Forthcoming* 87 (4): 1301–1318. <https://doi.org/10.1086/734261>.

Scheer, Brenda Case, and Wolfgang F. E. Preiser. 1994. *Design Review: Challenging Urban Aesthetic Control*. New York, NY: Chapman & Hall. <https://doi.org/10.1007/978-1-4615-2658-2>.

Schively, Carissa. 2007. "Understanding the NIMBY and LULU Phenomena: Reassessing Our Knowledge Base and Informing Future Research." *Journal of Planning Literature* 21 (3): 255–266. <https://doi.org/10.1177/0885412206295845>.

Schuetz, Jenny. 2009. "No Renters in My Suburban Backyard: Land Use Regulation and Rental Housing." *Journal of Policy Analysis and Management* 28 (2): 296–320. <https://doi.org/10.1002/pam.20428>.

Shertzer, Allison, Tate Twinam, and Randall P. Walsh. 2018. "Zoning and the Economic Geography of Cities." *Journal of Urban Economics* 105 (May): 20–39. <https://doi.org/10.1016/j.jue.2018.01.006>.

Smith, Thomas. 2019. "Standards for Contextual Infill Development." *Zoning Practice* 36 (4): 2–7. <https://www.planning.org/publications/document/9174224/>.

Stiglitz, Joseph E. 1982. "The Theory of Local Public Goods Twenty-Five Years After Tiebout: A Perspective." *National Bureau of Economic Research*. No. 954. https://www.nber.org/system/files/working_papers/w0954/w0954.pdf.

Talen, Emily. 2024. "From Small to Mega: Evaluating Urban Scale." *Urban Science* 8 (3): 3. <https://doi.org/10.3390/urbansci8030084>.

Ternullo, Stephanie. 2024. *The Politics of Concentrated Advantage*. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4766660.

Trounstine, Jessica. 2018. *Segregation by Design: Local Politics and Inequality in American Cities*. Cambridge, UK: Cambridge University Press.

Trounstine, Jessica. 2020. "The Geography of Inequality: How Land Use Regulation Produces Segregation." *American Political Science Review* 114 (2): 443–55. <https://doi.org/10.1017/S0003055419000844>.

Trounstine, Jessica. 2023. "You Won't Be My Neighbor: Opposition to High Density Development." *Urban Affairs Review* 59 (1): 294–308. <https://doi.org/10.1177/10780874211065776>.

Woodcock, Ian, Kim Dovey, and Gethin Davison. 2012. "Envisioning the Compact City: Resident Responses to Urban Design Imagery." *Australian Planner* 49 (1): 65–78. <https://doi.org/10.1080/07293682.2011.595726>.

Yoder, Jesse. 2020. "Does Property Ownership Lead to Participation in Local Politics? Evidence from Property Records and Meeting Minutes." *American Political Science Review* 114 (4): 1213–29. <https://doi.org/10.1017/S0003055420000556>.

Zhou, Yang. 2021. "The Political Economy of Historic Districts: The Private, the Public, and the Collective." *Regional Science and Urban Economics* 86 (January): 103583. <https://doi.org/10.1016/j.regsciurbeco.2020.103583>.

Author Biographies

Adrian Pietrzak is a Ph.D. student in Politics and Social Policy at Princeton University. He received his B.A. in Politics and Economics from New York University in 2019. He studies American urban politics, with a focus on the politics of land-use. He is also an Associate Policy Fellow at Reinvent Albany.

Tali Mendelberg is the John Work Garrett Professor of Politics at Princeton University, co-director of the Center for the Study of Democratic Politics, and director of the Program on Inequality at the Mamdouha S. Bobst Center for Peace and Justice. She is the author of *The Race Card: Campaign Strategy, Implicit Messages, and the Norm of Equality* and *The Silent Sex: Gender, Deliberation and Institutions* (with Chris Karpowitz).